1.4021 (X20Cr13)

Classification

Country Section Category
Germany Stainless and Heat Resisting Steels Stainless Steel with Ni < 2.5% without Mo, Nb and Ti

Chemical composition

Standard Fe, % Si, % Mn, % Cr, % P, % C, % S, %
83.195–87.84 < 1 < 1.5 12–14 < 0.04 0.16–0.25 < 0.015

Information on suppliers

Physical characteristics

Temperature, °C $$E\cdot 10^{9}$$, $$MPa$$ $$\alpha\cdot 10^{6}$$, $$K^{-1}$$ $$\varkappa$$, $$\frac{W}{m\cdot K}$$ $$\rho$$, $$\frac{kg}{m^3}$$ $$c\cdot 10^{-3}$$, $$\frac{J}{kg\cdot K}$$ $$R\cdot 10^{-6}$$, $$\Omega\cdot m$$
20 220 25 7700 0.46 0.6
100 10
200 10
300 10.5
400 10.5
500 12

Mechanical properties at 20 °C

Rolling Standard Size, mm Tension Classifiers $$\sigma _{U}$$, $$MPa$$ $$\sigma_{0.2}$$, $$MPa$$ $$\epsilon_L$$, % $$KV_{L}$$, $$J$$ Treatment
moderate hardening 650–950 450–600 10–12 20–25

Твёрдость по Викерсу

Rolling Standard Classifiers Value, HV
annealing, soft 190–240
moderate hardening 480–520

Brinell hardness number

Rolling Standard Classifiers Value, HBW
annealing, soft 230

Analogues

CIS, Russia, Ukraine
20X13
30Ch13

Description of chemical elements

Element Units of measurement Description
Fe % Iron
Si % Silicon
Mn % Manganese
Cr % Chrome
P % Phosphorus
C % Carbon
S % Sulfur

Description of physical characteristics

Parameter Units of measurement Description
$$E\cdot 10^{9}$$ $$MPa$$ Elastic modulus
$$\alpha\cdot 10^{6}$$ $$K^{-1}$$ Coefficient of thermal (linear) expansion (range 20°C–T)
$$\varkappa$$ $$\frac{W}{m\cdot K}$$ Coefficient of thermal conductivity (the heat capacity of the material)
$$\rho$$ $$\frac{kg}{m^3}$$ The density of the material
$$c\cdot 10^{-3}$$ $$\frac{J}{kg\cdot K}$$ The specific heat of the material (range 20°C–T)
$$R\cdot 10^{-6}$$ $$\Omega\cdot m$$ Electrical resistivity

Description of mechanical properties

Parameter Units of measurement Description
$$\sigma_{0.2}$$ $$MPa$$ Tensile stress required to produce a total elongation of 0.2%
$$\sigma _{U}$$ $$MPa$$ Ultimate tensile strength
$$\epsilon_L$$ % Elongation at break (longitudinal)
$$KV_{L}$$ $$J$$ Impact energy (longitudinal)