1.4057 (X17CrNi16-2)

Classification

Country Section Category
Germany Stainless and Heat Resisting Steels Stainless Steel with Ni < 2.5% without Mo, Nb and Ti

Chemical composition

Standard Fe, % Si, % Mn, % Cr, % Ni, % P, % C, % S, %
77.71–83.38 < 1 < 1.5 15–17 1.5–2.5 < 0.04 0.12–0.22 < 0.03

Information on suppliers

Physical characteristics

Temperature, °C $$E\cdot 10^{9}$$, $$MPa$$ $$\alpha\cdot 10^{6}$$, $$K^{-1}$$ $$\varkappa$$, $$\frac{W}{m\cdot K}$$ $$\rho$$, $$\frac{kg}{m^3}$$ $$c\cdot 10^{-3}$$, $$\frac{J}{kg\cdot K}$$ $$R\cdot 10^{-6}$$, $$\Omega\cdot m$$
20 220 25 7700 0.43 0.6
100 10.4
200 10.8
300 11.2
400 11.6
500 12

Mechanical properties at 20 °C

Rolling Standard Size, mm Tension Classifiers $$\sigma _{U}$$, $$MPa$$ $$\sigma_{0.2}$$, $$MPa$$ $$\epsilon_L$$, % $$\epsilon_T$$, % $$KV_{L}$$, $$J$$ Treatment
moderate hardening 800–950 600 10–14 8 Heat treatment at 800 ° C
annealing, soft 950
moderate hardening 15–25

Brinell hardness number

Rolling Standard Classifiers Value, HBW
annealing, soft 295

Analogues

CIS, Russia, Ukraine
20H17N2 (EP210)
EI268L

Description of chemical elements

Element Units of measurement Description
Fe % Iron
Si % Silicon
Mn % Manganese
Cr % Chrome
Ni % Nickel
P % Phosphorus
C % Carbon
S % Sulfur

Description of physical characteristics

Parameter Units of measurement Description
$$E\cdot 10^{9}$$ $$MPa$$ Elastic modulus
$$\alpha\cdot 10^{6}$$ $$K^{-1}$$ Coefficient of thermal (linear) expansion (range 20°C–T)
$$\varkappa$$ $$\frac{W}{m\cdot K}$$ Coefficient of thermal conductivity (the heat capacity of the material)
$$\rho$$ $$\frac{kg}{m^3}$$ The density of the material
$$c\cdot 10^{-3}$$ $$\frac{J}{kg\cdot K}$$ The specific heat of the material (range 20°C–T)
$$R\cdot 10^{-6}$$ $$\Omega\cdot m$$ Electrical resistivity

Description of mechanical properties

Parameter Units of measurement Description
$$\sigma_{0.2}$$ $$MPa$$ Tensile stress required to produce a total elongation of 0.2%
$$\sigma _{U}$$ $$MPa$$ Ultimate tensile strength
$$\epsilon_L$$ % Elongation at break (longitudinal)
$$\epsilon_T$$ % Elongation at break (transverse)
$$KV_{L}$$ $$J$$ Impact energy (longitudinal)