1.4542 (X5CrNiCuNb16-4)

Classification

Country Section Category
Germany Stainless and Heat Resisting Steels Stainless Steels with Special Additions

Chemical composition

Standard Fe, % Si, % Mn, % Cr, % Cu, % Ni, % P, % C, % S, % Nb, % Mo, %
69.625–79 < 0.7 < 1.5 15–17 3–5 3–5 < 0.04 < 0.07 < 0.015 < 0.45 < 0.6

Information on suppliers

Physical characteristics

Temperature, °C $$E\cdot 10^{9}$$, $$MPa$$ $$\alpha\cdot 10^{6}$$, $$K^{-1}$$ $$\varkappa$$, $$\frac{W}{m\cdot K}$$ $$\rho$$, $$\frac{kg}{m^3}$$ $$c\cdot 10^{-3}$$, $$\frac{J}{kg\cdot K}$$ $$R\cdot 10^{-6}$$, $$\Omega\cdot m$$
20 200 16 7800 0.5 0.71
100 10.9
300 11.1

Mechanical properties at 20 °C

Rolling Standard Size, mm Tension Classifiers $$\sigma _{U}$$, $$MPa$$ $$\sigma_{0.2}$$, $$MPa$$ $$\epsilon_L$$, % $$\epsilon_T$$, % $$KV_{L}$$, $$J$$ Treatment
aging 930–1100 720 16 12 Heat treatment at 930 ° C
aging 40–75

Brinell hardness number

Rolling Standard Classifiers Value, HBW
solution annealing 360

Description of chemical elements

Element Units of measurement Description
Fe % Iron
Si % Silicon
Mn % Manganese
Cr % Chrome
Cu % Copper
Ni % Nickel
P % Phosphorus
C % Carbon
S % Sulfur
Nb % Niobium
Mo % Molybdenum

Description of physical characteristics

Parameter Units of measurement Description
$$E\cdot 10^{9}$$ $$MPa$$ Elastic modulus
$$\alpha\cdot 10^{6}$$ $$K^{-1}$$ Coefficient of thermal (linear) expansion (range 20°C–T)
$$\varkappa$$ $$\frac{W}{m\cdot K}$$ Coefficient of thermal conductivity (the heat capacity of the material)
$$\rho$$ $$\frac{kg}{m^3}$$ The density of the material
$$c\cdot 10^{-3}$$ $$\frac{J}{kg\cdot K}$$ The specific heat of the material (range 20°C–T)
$$R\cdot 10^{-6}$$ $$\Omega\cdot m$$ Electrical resistivity

Description of mechanical properties

Parameter Units of measurement Description
$$\sigma_{0.2}$$ $$MPa$$ Tensile stress required to produce a total elongation of 0.2%
$$\sigma _{U}$$ $$MPa$$ Ultimate tensile strength
$$\epsilon_L$$ % Elongation at break (longitudinal)
$$\epsilon_T$$ % Elongation at break (transverse)
$$KV_{L}$$ $$J$$ Impact energy (longitudinal)