1.4878 (X12CrNiTi18-9)
The filler material 1.4551, 1.4829
Classification
Country |
Section |
Category |
Germany |
Stainless and Heat Resisting Steels |
Heat Resistant Steels with Ni > = 2.5% |
Chemical composition
Standard |
Fe, % |
Si, % |
Mn, % |
Cr, % |
Ti, % |
Ni, % |
P, % |
C, % |
S, % |
|
65.04–74 |
< 1 |
< 2 |
17–19 |
< 0.8 |
9–12 |
< 0.045 |
< 0.1 |
< 0.015 |
Information on suppliers
Physical characteristics
Temperature, °C |
$$\alpha\cdot 10^{6}$$, $$K^{-1}$$ |
$$\varkappa$$, $$\frac{W}{m\cdot K}$$ |
$$\rho$$, $$\frac{kg}{m^3}$$ |
$$c\cdot 10^{-3}$$, $$\frac{J}{kg\cdot K}$$ |
$$R\cdot 10^{-6}$$, $$\Omega\cdot m$$ |
20 |
|
15 |
7900 |
0.5 |
0.73 |
400 |
18 |
|
|
|
|
800 |
19 |
|
|
|
|
Mechanical properties at 20 °C
Rolling |
Standard |
Size, mm |
Tension |
Classifiers |
$$\sigma _{U}$$, $$MPa$$ |
$$\sigma_{0.2}$$, $$MPa$$ |
$$\epsilon_L$$, % |
Treatment |
|
|
|
|
solution annealing |
500–720 |
190 |
40 |
|
Brinell hardness number
Rolling |
Standard |
Classifiers |
Value, HBW |
|
|
solution annealing |
215 |
Analogues
Description of chemical elements
Element |
Units of measurement |
Description |
Fe |
% |
Iron |
Si |
% |
Silicon |
Mn |
% |
Manganese |
Cr |
% |
Chrome |
Ti |
% |
Titan |
Ni |
% |
Nickel |
P |
% |
Phosphorus |
C |
% |
Carbon |
S |
% |
Sulfur |
Description of physical characteristics
Parameter |
Units of measurement |
Description |
$$\alpha\cdot 10^{6}$$ |
$$K^{-1}$$ |
Coefficient of thermal (linear) expansion (range 20°C–T) |
$$\varkappa$$ |
$$\frac{W}{m\cdot K}$$ |
Coefficient of thermal conductivity (the heat capacity of the material) |
$$\rho$$ |
$$\frac{kg}{m^3}$$ |
The density of the material |
$$c\cdot 10^{-3}$$ |
$$\frac{J}{kg\cdot K}$$ |
The specific heat of the material (range 20°C–T) |
$$R\cdot 10^{-6}$$ |
$$\Omega\cdot m$$ |
Electrical resistivity |
Description of mechanical properties
Parameter |
Units of measurement |
Description |
$$\sigma_{0.2}$$ |
$$MPa$$ |
Tensile stress required to produce a total elongation of 0.2% |
$$\sigma _{U}$$ |
$$MPa$$ |
Ultimate tensile strength |
$$\epsilon_L$$ |
% |
Elongation at break (longitudinal) |